亚洲国产成人久久77-亚洲国产成人久久99精品-亚洲国产成人久久精品hezyo-亚洲国产成人久久精品动漫-人妖hd-人妖ts在线,一本道高清DVD在线视频,2020亚洲永久精品导航,国产久久视频在线视频观看

當前位置: 首頁 JCRQ2 期刊介紹(非官網(wǎng))
Memetic Computing

Memetic ComputingSCIE

國際簡稱:MEMET COMPUT  參考譯名:模因計算

  • 中科院分區(qū)

    2區(qū)

  • CiteScore分區(qū)

    Q1

  • JCR分區(qū)

    Q2

基本信息:
ISSN:1865-9284
E-ISSN:1865-9292
是否OA:未開放
是否預警:否
TOP期刊:是
出版信息:
出版地區(qū):GERMANY
出版商:Springer Berlin Heidelberg
出版語言:English
出版周期:4 issues per year
出版年份:2009
研究方向:COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-OPERATIONS RESEARCH & MANAGEMENT SCIENCE
評價信息:
影響因子:3.3
H-index:26
CiteScore指數(shù):6.8
SJR指數(shù):0.945
SNIP指數(shù):1.1
發(fā)文數(shù)據(jù):
Gold OA文章占比:8.64%
研究類文章占比:100.00%
年發(fā)文量:17
自引率:0.1276...
開源占比:0.0795
出版撤稿占比:0
出版國人文章占比:0.42
OA被引用占比:0
英文簡介 期刊介紹 CiteScore數(shù)據(jù) 中科院SCI分區(qū) JCR分區(qū) 發(fā)文數(shù)據(jù) 常見問題

英文簡介Memetic Computing期刊介紹

Memes have been defined as basic units of transferrable information that reside in the brain and are propagated across populations through the process of imitation. From an algorithmic point of view, memes have come to be regarded as building-blocks of prior knowledge, expressed in arbitrary computational representations (e.g., local search heuristics, fuzzy rules, neural models, etc.), that have been acquired through experience by a human or machine, and can be imitated (i.e., reused) across problems.

The Memetic Computing journal welcomes papers incorporating the aforementioned socio-cultural notion of memes into artificial systems, with particular emphasis on enhancing the efficacy of computational and artificial intelligence techniques for search, optimization, and machine learning through explicit prior knowledge incorporation. The goal of the journal is to thus be an outlet for high quality theoretical and applied research on hybrid, knowledge-driven computational approaches that may be characterized under any of the following categories of memetics:

Type 1: General-purpose algorithms integrated with human-crafted heuristics that capture some form of prior domain knowledge; e.g., traditional memetic algorithms hybridizing evolutionary global search with a problem-specific local search.

Type 2: Algorithms with the ability to automatically select, adapt, and reuse the most appropriate heuristics from a diverse pool of available choices; e.g., learning a mapping between global search operators and multiple local search schemes, given an optimization problem at hand.

Type 3: Algorithms that autonomously learn with experience, adaptively reusing data and/or machine learning models drawn from related problems as prior knowledge in new target tasks of interest; examples include, but are not limited to, transfer learning and optimization, multi-task learning and optimization, or any other multi-X evolutionary learning and optimization methodologies.

期刊簡介Memetic Computing期刊介紹

《Memetic Computing》自2009出版以來,是一本計算機科學優(yōu)秀雜志。致力于發(fā)表原創(chuàng)科學研究結(jié)果,并為計算機科學各個領(lǐng)域的原創(chuàng)研究提供一個展示平臺,以促進計算機科學領(lǐng)域的的進步。該刊鼓勵先進的、清晰的闡述,從廣泛的視角提供當前感興趣的研究主題的新見解,或?qū)彶槎嗄陙砟硞€重要領(lǐng)域的所有重要發(fā)展。該期刊特色在于及時報道計算機科學領(lǐng)域的最新進展和新發(fā)現(xiàn)新突破等。該刊近一年未被列入預警期刊名單,目前已被權(quán)威數(shù)據(jù)庫SCIE收錄,得到了廣泛的認可。

該期刊投稿重要關(guān)注點:

Cite Score數(shù)據(jù)(2024年最新版)Memetic Computing Cite Score數(shù)據(jù)

  • CiteScore:6.8
  • SJR:0.945
  • SNIP:1.1
學科類別 分區(qū) 排名 百分位
大類:Mathematics 小類:Control and Optimization Q1 14 / 130

89%

大類:Mathematics 小類:General Computer Science Q1 41 / 232

82%

CiteScore 是由Elsevier(愛思唯爾)推出的另一種評價期刊影響力的文獻計量指標。反映出一家期刊近期發(fā)表論文的年篇均引用次數(shù)。CiteScore以Scopus數(shù)據(jù)庫中收集的引文為基礎(chǔ),針對的是前四年發(fā)表的論文的引文。CiteScore的意義在于,它可以為學術(shù)界提供一種新的、更全面、更客觀地評價期刊影響力的方法,而不僅僅是通過影響因子(IF)這一單一指標來評價。

歷年Cite Score趨勢圖

中科院SCI分區(qū)Memetic Computing 中科院分區(qū)

中科院 2023年12月升級版 綜述期刊:否 Top期刊:否
大類學科 分區(qū) 小類學科 分區(qū)
計算機科學 2區(qū) COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 計算機:人工智能 OPERATIONS RESEARCH & MANAGEMENT SCIENCE 運籌學與管理科學 2區(qū) 2區(qū)

中科院分區(qū)表 是以客觀數(shù)據(jù)為基礎(chǔ),運用科學計量學方法對國際、國內(nèi)學術(shù)期刊依據(jù)影響力進行等級劃分的期刊評價標準。它為我國科研、教育機構(gòu)的管理人員、科研工作者提供了一份評價國際學術(shù)期刊影響力的參考數(shù)據(jù),得到了全國各地高校、科研機構(gòu)的廣泛認可。

中科院分區(qū)表 將所有期刊按照一定指標劃分為1區(qū)、2區(qū)、3區(qū)、4區(qū)四個層次,類似于“優(yōu)、良、及格”等。最開始,這個分區(qū)只是為了方便圖書管理及圖書情報領(lǐng)域的研究和期刊評估。之后中科院分區(qū)逐步發(fā)展成為了一種評價學術(shù)期刊質(zhì)量的重要工具。

歷年中科院分區(qū)趨勢圖

JCR分區(qū)Memetic Computing JCR分區(qū)

2023-2024 年最新版
按JIF指標學科分區(qū) 收錄子集 分區(qū) 排名 百分位
學科:COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE SCIE Q2 82 / 197

58.6%

學科:OPERATIONS RESEARCH & MANAGEMENT SCIENCE SCIE Q2 32 / 106

70.3%

按JCI指標學科分區(qū) 收錄子集 分區(qū) 排名 百分位
學科:COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE SCIE Q2 86 / 198

56.82%

學科:OPERATIONS RESEARCH & MANAGEMENT SCIENCE SCIE Q2 38 / 106

64.62%

JCR分區(qū)的優(yōu)勢在于它可以幫助讀者對學術(shù)文獻質(zhì)量進行評估。不同學科的文章引用量可能存在較大的差異,此時單獨依靠影響因子(IF)評價期刊的質(zhì)量可能是存在一定問題的。因此,JCR將期刊按照學科門類和影響因子分為不同的分區(qū),這樣讀者可以根據(jù)自己的研究領(lǐng)域和需求選擇合適的期刊。

歷年影響因子趨勢圖

發(fā)文數(shù)據(jù)

2023-2024 年國家/地區(qū)發(fā)文量統(tǒng)計
  • 國家/地區(qū)數(shù)量
  • CHINA MAINLAND53
  • Singapore10
  • USA7
  • England6
  • Australia5
  • Spain5
  • Canada4
  • Algeria3
  • Mexico3
  • Brazil2

本刊中國學者近年發(fā)表論文

  • 1、An intelligent scheduling algorithm for complex manufacturing system simulation with frequent synchronizations in a cloud environment

    Author: Feng Yao, Yiping Yao, Lining Xing, Huangke Chen, Zhongwei Lin, Tianlin Li

    Journal: Memetic Computing, 2019, Vol., , DOI:10.1007/s12293-019-00284-3

  • 2、Mathematical modeling and a discrete artificial bee colony algorithm for the welding shop scheduling problem

    Author: Xinyu Li, Shengqiang Xiao, Cuiyu Wang, Jin Yi

    Journal: Memetic Computing, 2019, Vol., , DOI:10.1007/s12293-019-00283-4

  • 3、Project portfolio selection and scheduling under a fuzzy environment

    Author: Xiaoxiong Zhang, Keith W. Hipel, Yuejin Tan

    Journal: Memetic Computing, 2019, Vol., , DOI:10.1007/s12293-019-00282-5

  • 4、A multi-level knee point based multi-objective evolutionary algorithm for AUC maximization

    Author: Jianfeng Qiu, Minghui Liu, Lei Zhang, Wei Li, Fan Cheng

    Journal: Memetic Computing, 2019, Vol., , DOI:10.1007/s12293-019-00280-7

  • 5、DSM-DE: a differential evolution with dynamic speciation-based mutation for single-objective optimization

    Author: Libao Deng, Lili Zhang, Haili Sun, Liyan Qiao

    Journal: Memetic Computing, 2019, Vol., , DOI:10.1007/s12293-019-00279-0

  • 6、Novel paralleled extreme learning machine networks for fault diagnosis of wind turbine drivetrain

    Author: Xian-Bo Wang, Zhi-Xin Yang, Pak Kin Wong, Chao Deng

    Journal: Memetic Computing, 2018, Vol., , DOI:10.1007/s12293-018-0277-2

  • 7、An improved differential evolution algorithm for solving a distributed assembly flexible job shop scheduling problem

    Author: Xiuli Wu, Xiajing Liu, Ning Zhao

    Journal: Memetic Computing, 2018, Vol., , DOI:10.1007/s12293-018-00278-7

  • 8、Improving artificial bee colony with one-position inheritance mechanism

    Author: Xin Zhang, Shiu Yin Yuen

    Journal: Memetic Computing, 2013, Vol.5, 187-211, DOI:10.1007/s12293-013-0117-3

投稿常見問題

通訊方式:TIERGARTENSTRASSE 17, HEIDELBERG, GERMANY, D-69121。