亚洲国产成人久久77-亚洲国产成人久久99精品-亚洲国产成人久久精品hezyo-亚洲国产成人久久精品动漫-人妖hd-人妖ts在线,一本道高清DVD在线视频,2020亚洲永久精品导航,国产久久视频在线视频观看

當前位置: 首頁 JCRQ1 期刊介紹(非官網)
Insights Into Imaging

Insights Into ImagingSCIE

國際簡稱:INSIGHTS IMAGING  參考譯名:洞察成像

  • 中科院分區

    2區

  • CiteScore分區

    Q1

  • JCR分區

    Q1

基本信息:
ISSN:1869-4101
E-ISSN:1869-4101
是否OA:開放
是否預警:否
TOP期刊:是
出版信息:
出版地區:GERMANY
出版商:Springer Berlin Heidelberg
出版語言:English
出版周期:1 issue/year
出版年份:2010
研究方向:Medicine-Radiology, Nuclear Medicine and Imaging
評價信息:
影響因子:4.1
CiteScore指數:7.3
SJR指數:1.24
SNIP指數:2.142
發文數據:
Gold OA文章占比:99.66%
研究類文章占比:77.40%
年發文量:208
自引率:0.0425...
開源占比:0.996
出版撤稿占比:0
出版國人文章占比:0.02
OA被引用占比:1
英文簡介 期刊介紹 CiteScore數據 中科院SCI分區 JCR分區 發文數據 常見問題

英文簡介Insights Into Imaging期刊介紹

Insights into Imaging (I3) is a peer-reviewed open access journal published under the brand SpringerOpen. All content published in the journal is freely available online to anyone, anywhere!

I3 continuously updates scientific knowledge and progress in best-practice standards in radiology through the publication of original articles and state-of-the-art reviews and opinions, along with recommendations and statements from the leading radiological societies in Europe.

Founded by the European Society of Radiology (ESR), I3 creates a platform for educational material, guidelines and recommendations, and a forum for topics of controversy.

A balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes I3 an indispensable source for current information in this field.

I3 is owned by the ESR, however authors retain copyright to their article according to the Creative Commons Attribution License (see Copyright and License Agreement). All articles can be read, redistributed and reused for free, as long as the author of the original work is cited properly.

The open access fees (article-processing charges) for this journal are kindly sponsored by ESR for all Members.

The journal went open access in 2012, which means that all articles published since then are freely available online.

期刊簡介Insights Into Imaging期刊介紹

《Insights Into Imaging》自2010出版以來,是一本醫學優秀雜志。致力于發表原創科學研究結果,并為醫學各個領域的原創研究提供一個展示平臺,以促進醫學領域的的進步。該刊鼓勵先進的、清晰的闡述,從廣泛的視角提供當前感興趣的研究主題的新見解,或審查多年來某個重要領域的所有重要發展。該期刊特色在于及時報道醫學領域的最新進展和新發現新突破等。該刊近一年未被列入預警期刊名單,目前已被權威數據庫SCIE收錄,得到了廣泛的認可。

該期刊投稿重要關注點:

  • 預計審稿時間: 13 Weeks
  • 國際TOP期刊
  • 醫學
  • RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
  • SCIE
  • 中科院2區
  • 非預警

Cite Score數據(2024年最新版)Insights Into Imaging Cite Score數據

  • CiteScore:7.3
  • SJR:1.24
  • SNIP:2.142
學科類別 分區 排名 百分位
大類:Medicine 小類:Radiology, Nuclear Medicine and Imaging Q1 42 / 333

87%

CiteScore 是由Elsevier(愛思唯爾)推出的另一種評價期刊影響力的文獻計量指標。反映出一家期刊近期發表論文的年篇均引用次數。CiteScore以Scopus數據庫中收集的引文為基礎,針對的是前四年發表的論文的引文。CiteScore的意義在于,它可以為學術界提供一種新的、更全面、更客觀地評價期刊影響力的方法,而不僅僅是通過影響因子(IF)這一單一指標來評價。

歷年Cite Score趨勢圖

中科院SCI分區Insights Into Imaging 中科院分區

中科院 2023年12月升級版 綜述期刊:否 Top期刊:否
大類學科 分區 小類學科 分區
醫學 2區 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING 核醫學 2區

中科院分區表 是以客觀數據為基礎,運用科學計量學方法對國際、國內學術期刊依據影響力進行等級劃分的期刊評價標準。它為我國科研、教育機構的管理人員、科研工作者提供了一份評價國際學術期刊影響力的參考數據,得到了全國各地高校、科研機構的廣泛認可。

中科院分區表 將所有期刊按照一定指標劃分為1區、2區、3區、4區四個層次,類似于“優、良、及格”等。最開始,這個分區只是為了方便圖書管理及圖書情報領域的研究和期刊評估。之后中科院分區逐步發展成為了一種評價學術期刊質量的重要工具。

歷年中科院分區趨勢圖

JCR分區Insights Into Imaging JCR分區

2023-2024 年最新版
按JIF指標學科分區 收錄子集 分區 排名 百分位
學科:RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING SCIE Q1 30 / 204

85.5%

按JCI指標學科分區 收錄子集 分區 排名 百分位
學科:RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING SCIE Q1 30 / 204

85.54%

JCR分區的優勢在于它可以幫助讀者對學術文獻質量進行評估。不同學科的文章引用量可能存在較大的差異,此時單獨依靠影響因子(IF)評價期刊的質量可能是存在一定問題的。因此,JCR將期刊按照學科門類和影響因子分為不同的分區,這樣讀者可以根據自己的研究領域和需求選擇合適的期刊。

歷年影響因子趨勢圖

發文數據

2023-2024 年國家/地區發文量統計
  • 國家/地區數量
  • Italy65
  • USA64
  • England38
  • Austria34
  • Spain32
  • France29
  • Netherlands28
  • Switzerland21
  • GERMANY (FED REP GER)20
  • Belgium19

本刊中國學者近年發表論文

  • 1、Machine learning combined with radiomics and deep learning features extracted from CT images: a novel AI model to distinguish benign from malignant ovarian tumors

    Author: Jan, Ya-Ting; Tsai, Pei-Shan; Huang, Wen-Hui; Chou, Ling-Ying; Huang, Shih-Chieh; Wang, Jing-Zhe; Lu, Pei-Hsuan; Lin, Dao-Chen; Yen, Chun-Sheng; Teng, Ju-Ping; Mok, Greta S. P.; Shih, Cheng-Ting; Wu, Tung-Hsin

    Journal: INSIGHTS INTO IMAGING. 2023; Vol. 14, Issue 1, pp. -. DOI: 10.1186/s13244-023-01412-x

  • 2、Multi-channel deep learning model-based myocardial spatial-temporal morphology feature on cardiac MRI cine images diagnoses the cause of LVH

    Author: Diao, Kaiyue; Liang, Hong-qing; Yin, Hong-kun; Yuan, Ming-jing; Gu, Min; Yu, Peng-xin; He, Sen; Sun, Jiayu; Song, Bin; Li, Kang; He, Yong

    Journal: INSIGHTS INTO IMAGING. 2023; Vol. 14, Issue 1, pp. -. DOI: 10.1186/s13244-023-01401-0

  • 3、CT and MRI features of hepatic epithelioid haemangioendothelioma: a multi-institutional retrospective analysis of 15 cases and a literature review

    Author: Luo, Lianmei; Cai, Zeyu; Zeng, Sihui; Wang, Lizhu; Kang, Zhuang; Yang, Ning; Zhang, Yaqin

    Journal: INSIGHTS INTO IMAGING. 2023; Vol. 14, Issue 1, pp. -. DOI: 10.1186/s13244-022-01344-y

  • 4、Predicting histologic differentiation of solitary hepatocellular carcinoma up to 5 cm on gadoxetate disodium-enhanced MRI

    Author: Yang, Ting; Wei, Hong; Wu, Yuanan; Qin, Yun; Chen, Jie; Jiang, Hanyu; Song, Bin

    Journal: INSIGHTS INTO IMAGING. 2023; Vol. 14, Issue 1, pp. -. DOI: 10.1186/s13244-022-01354-w

  • 5、Predictive models and early postoperative recurrence evaluation for hepatocellular carcinoma based on gadoxetic acid-enhanced MR imaging

    Author: Li, Qian; Wei, Yi; Zhang, Tong; Che, Feng; Yao, Shan; Wang, Cong; Shi, Dandan; Tang, Hehan; Song, Bin

    Journal: INSIGHTS INTO IMAGING. 2023; Vol. 14, Issue 1, pp. -. DOI: 10.1186/s13244-022-01359-5

  • 6、Impact of glycemic control on biventricular function in patients with type 2 diabetes mellitus: a cardiac magnetic resonance tissue tracking study

    Author: Zhu, Jing; Li, Wenjia; Chen, Fang; Xie, Zhen; Zhuo, Kaimin; Huang, Ruijue

    Journal: INSIGHTS INTO IMAGING. 2023; Vol. 14, Issue 1, pp. -. DOI: 10.1186/s13244-022-01357-7

  • 7、Deep learning and radiomic feature-based blending ensemble classifier for malignancy risk prediction in cystic renal lesions

    Author: He, Quan-Hao; Feng, Jia-Jun; Lv, Fa-Jin; Jiang, Qing; Xiao, Ming-Zhao

    Journal: INSIGHTS INTO IMAGING. 2023; Vol. 14, Issue 1, pp. -. DOI: 10.1186/s13244-022-01349-7

  • 8、A feasibility study of reduced full-of-view synthetic high-b-value diffusion-weighted imaging in uterine tumors

    Author: Tang, Qian; Zhou, Qiqi; Chen, Wen; Sang, Ling; Xing, Yu; Liu, Chao; Wang, Kejun; Liu, Weiyin Vivian; Xu, Lin

    Journal: INSIGHTS INTO IMAGING. 2023; Vol. 14, Issue 1, pp. -. DOI: 10.1186/s13244-022-01350-0

投稿常見問題

通訊方式:ONE NEW YORK PLAZA, SUITE 4600 , NEW YORK, United States, NY, 10004。